DNR-AI-256

2-Channel Synchro/Resolver/LVDT/RVDT Interface

- DNR-AI-256 for use with RACKtangle[™] I/O chassis (requires two slots in the RACKtangle for the additional fan)
- 2 input / output channels
- 16-bit resolution
- 3-wire (Synchro) and 4-wire (Resolver) inputs
- 4, 5 and 6-wire LVDT/RVDT support
- Reference output per channel
- 5 to 18 Vrms programmable reference
- 50 Hz to 10 kHz
- up to 2.4 VA without external buffer
- Fully Isolated (Chan to Chan and Chan to RACKtangle)

General Description

The DNR-AI-256 are high performance, two channel Synchro/Resolver input and output boards for UEI's powerful RACKtangle I/O chassis,. The 256 series boards are functionally similar to the DNx-AI-255 but provide significantly more output drive for applications that require it. The DNR-AI-256 series is also an ideal solution for LVDT/RVDTs. The board may be configured as two inputs, two outputs, or one input and one output.

The board provides 2 input channels that will monitor either 3-wire synchros or 4-wire resolvers. The board's high precision circuitry combined with each channel's independent 16-bit A/D converter allow measurement accuracies up to \pm 2.6 arc-minute. The inputs may be read at rates up to the excitation frequency (10 kHz max).

Each channel provides its own programmable reference with outputs independently programmable from 5 to 28 Vrms at frequencies from 50 to 10 kHz and up to 2.4 VA. When using external references, the DNR-AI-256 automatically adjusts simulated outputs for variable amplitude and frequency references in one reference cycle.

The DNR-AI-256 also provides two channels of synchro/resolver/ RVDT/LVDT interface that are ideal for use with items such as attitude indicators or as a test source for a wide variety of synchro or resolver input devices. The outputs each accept an independent reference signal and offer 16-bit output resolution. Each channel will drive up to 19.8 Vrms at 3.0 VA (total board output must be less than or equal to 5 VA) without external buffering. The current consumed by each output channel may be monitored to confirm the wiring is correct and the coils of the synchro/resolver or RVDT/LVDT are as expected.

The board offers 350 Vrms of isolation between channels as well as between the I/O connections and the Cube or RACKtangle chassis. Like all PowerDNA/UEILogger I/O boards, the DNR-AI-256 offers operation in harsh environments and has been tested to 3g vibration, 50g shock, -40 to +70 °C temperatures and altitudes up to 70,000 feet.

Software is included, providing a comprehensive, yet easy-to-use API that supports all popular operating systems, including Windows, Linux, and most real-time operating systems—such as QNX, Intime, VXworks, and more. Additionally, the UEIDAQ Framework—an even higher level Windows driver—supplies complete support for those creating applications in many popular Windows programming languages, as well as data acquisition software packages such as LabVIEW and MATLAB/Simulink.

DNR-AI-256 shown without fan board which is installed in adjacent slot.

Technical Specifications (Synchro/Resolver mode):

Inputs						
Number of channels	2					
Configuration	Synchro (3-wire) or Resolver (4-wire) may be					
	selected via software					
Resolution	16-bit					
Accuracy	± 2.6 arc-minute					
Frequency	50 Hz to 10 kHz					
Signal Inputs	5 - 28 Vrms					
Input Impedance	478 kΩ ±10 kΩ					
Acceleration	300 rps/s @ 60 Hz, 450 rps/s @ 400 Hz 1000 rps/s @ 4000 Hz					
Step response	800 mS - 179° @ 60 Hz, 150 mS - 179° @ 2500 Hz					
Update rate	Max. rate is equal to the excitation frequency.					
Reference output						
Number of channels	2 (one per input channel)					
Output voltage	up to19.8 Vrms at 3.0 VA (see table on following					
	page for other output voltages)					
Voltage resolution	16 bits					
Reference Frequency	50 Hz to 10 kHz (±0.1%)					
Synchro / Resolver Outputs						
Number of channels	2 (total number of synchro/resolver inputs and simulated outputs is limited to 2.)					
Configuration	Synchro (3-wire) or Resolver (4-wire)					
Resolution	16-bit					
Output Voltage	up to 19.8 Vrms up to 2.4 VA. (see table)					
Output Accuracy	±4 arc-minutes					
Output readback and protection						
Output protection	Automatic shut down on overload					
Voltage output monitoring	±70 mV, monitored at 1.3 Hz					
Current output monitoring	±1.0 mA, monitored at 1.3 Hz					
General Specifications						
Operating temperature	Tested -40 °C to +85 °C					
Vibration IEC 60068-2-6	5 g, 10-500 Hz, sinusoidal					
IEC 60068-2-64	5 g (rms), 10-500 Hz, broad-band random					
Shock IEC 60068-2-27	100 g, 3 ms half sine, 18 shocks @ 6 orientations 30 g, 11 ms half sine, 18 shocks @ 6 orientations					
Humidity	5 to 95%, non-condensing					
Altitude	120,000 ft					
MTBF	275,000 hours					
Power consumption	6 Watt with no load 12 Watt maximum					

Ordering Guide

Part Number	Description
DNR-AI-256	High Performance Dual channel synchro / resolver board for RACKtangle I/O chassis
DNA-STP-62	62 conductor screw terminal panel
DNA-CBL-62	62 conductor shielded cable

Output Drive Specifications (Synchro/Resolver):

		· · · · ·			
Vrms	Vpp	Idcmax	Irms	VA max	Rlmin
2.0	5.7	0.20	0.141	0.6	14.1
3.0	8.5	0.20	0.141	0.9	21.2
4.0	11.3	0.20	0.141	1.1	28.3
5.0	14.1	0.20	0.141	1.4	35.4
6.0	17.0	0.20	0.141	1.7	42.4
7.0	19.8	0.20	0.141	2.0	49.5
8.0	22.6	0.20	0.141	2.3	56.6
9.0	25.5	0.20	0.133	2.4	67.5
10.0	28.3	0.20	0.120	3.0	83.3
11.0	31.1	0.20	0.109	3.0	100.8
12.0	33.9	0.10	0.100	3.0	120.0
13.0	36.8	0.10	0.092	3.0	140.8
14.0	39.6	0.10	0.086	3.0	163.3
15.0	42.4	0.10	0.080	3.0	187.5
16.0	45.3	0.10	0.075	3.0	213.3
17.0	48.1	0.10	0.071	3.0	240.8
18.0	50.9	0.10	0.067	3.0	270.0

Specifications above are for a single output channel. Total output power for all channels combined may not exceed 5.0 VA

Connection Notes:

The DNR-AI-256 may be used with Synchros or Resolvers, with internally provided excitation, or with external excitation, and may be used in input (to measure the output of a Synchro or Resolver) or simulated Synchro/Resolver output modes. The following connection guide depicts typical connections in each of the 8 ways the DNR-AI-256 is commonly utilized. The tables map each channels "In" and "Out" terminals as shown on the pinout diagram above to standard designations used in Synchro and Resolver applications.

Input Mode, Internally generated excitation		Input Mode, External excitation		Simulator Mode, Internal excitation			SimulatorMode, External excitation				
<u>Inputs</u>	<u>Synchro</u>	<u>Resolver</u>	<u>Inputs</u>	<u>Synchro</u>	<u>Resolver</u>	<u>Inputs</u>	<u>Synchro</u>	<u>Resolver</u>	<u>Inputs</u>	<u>Synchro</u>	<u>Resolver</u>
In A+	S1	S1	In A+	S1	S1	In A+	NC	NC	In A+	NC	NC
In A-	С	S3	In A-	С	S3	In A-	NC	NC	In A-	NC	NC
In B+	S2	S2	In B+	S2	S2	In B+	NC	NC	In B+	NC	NC
In B-	С	S4	In B-	С	S4	In B-	NC	NC	In B-	NC	NC
In C+	S3	NC	In C+	S3	NC	In C+	NC	NC	In C+	NC	NC
In C-	С	NC	In C-	С	NC	In C-	NC	NC	In C-	NC	NC
In D+	NC	NC	In D+	Exc+	Exc+	In D+	NC	NC	In D+	Exc+	Exc+
In D-	NC	NC	In D-	Exc-	Exc-	In D-	NC	NC	In D-	Exc-	Exc-
<u>Outputs</u>	<u>Synchro</u>	<u>Resolver</u>	<u>Outputs</u>	<u>Synchro</u>	<u>Resolver</u>	<u>Outputs</u>	<u>Synchro</u>	<u>Resolver</u>	<u>Outputs</u>	<u>Synchro</u>	<u>Resolver</u>
Out A+	NC	NC	Out A+	NC	NC	Out A+	S1	S1	Out A+	S1	S1
Out A-	NC	NC	Out A-	NC	NC	Out A-	С	S3	Out A-	С	S3
Out B+	NC	NC	Out B+	NC	NC	Out B+	S2	S2	Out B+	S2	S2
Out B-	NC	NC	Out B-	NC	NC	Out B-	С	S4	Out B-	С	S4
Out C+ Out C- Out D+	NC NC R1	NC NC R1	Out C+ Out C- Out D+	NC NC NC	NC NC NC	Out C+ Out C- Out D+	S3 C Exc+	Opt+ Opt- Exc+	Out C+ Out C- Out D+	S3 C NC	NC NC NC
Out D-	R2	R3	Out D-	NC	NC	Out D-	Exc-	Exc-	Out D-	NC	NC